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Abstract

Spatial and temporal variation can cause problems in designing and conducting experiments. An
introduction to methods for controlling spatial and temporal variation in ecological experiments is provided
in this article. Failure to consider spatial and temporal variation often causes researchers to lay out
experiments incorrectly. The challenge is to design experiments that not only reflect the natural variation
seen in the field but also control for the variation so that statistical tests have sufficient power.

Spatial variation is usually controlled by grouping observations and treatments into blocks. Blocks
can be laid out in a number of ways and Analysis of Variance (ANOVA) approaches to control for block
effects are discussed.

The control of temporal variation presents special difficulties because data are often serially correlated
and so observations are not independent. Use of intervention analysis and repeated measures analysis of
variance to control for temporal variation are discussed. Ecologists have also used experimental designs
which are known as BACI designs (i.e., Before-After-Control-Impact design) and can be extended to
include multiple control and/or impact sites. Intervention analysis, BACI designs, and their extensions
have subtle differences because of different assumptions about not only temporal variation but also
spatial variation.

Several recommendations are given. These include: 1) the need to have good statistical advice before
starting an experiment, 2) the need to have a sufficient number of replicates that are spread over the range

of spatial and temporal variation, and 3) the need to correctly control for serial correlation.
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Introduction

Ecological data derived from experiments and
observational studies done in the field are very of-
ten variable because patterns in nature are masked
by temporal and spatial variation in physical and
biological factors. Even though ecologists are well
aware of the problems caused by natural variation,
the ecological literature is filled experiments that
either ignore the difficulties caused by spatial and
temporal variation or deal with them in an inappro-
priate manner. Here I provide an introduction to
methods for controlling spatial and temporal vari-
ation. There is a vast literature in this area and I can
only offer some guidelines and provide a list of
helpful references.

Spatial and temporal variation can cause prob-
lems even in the most straightforward statistical
tests. This can be easily seen in a simple example.
Suppose we wished to test the hypothesis that graz-
ing in the valleys that line Lake Hovsgol reduces
aboveground biomass of herbaceous plants. We
might test this hypothesis by setting up a simple #-

test. The test is carried out in three steps. First, we
pose the null hypothesis that the parametric means
are equal (i.e. average aboveground biomass of
plants is the same in grazed and ungrazed areas)
and the alternative hypothesis that they are not. Next
we randomly draw samples from the two
populations - for example, areas where grazing
animals have been excluded and areas where ani-
mal graze freely. Finally we test the hypotheses
based on the magnitude of the test statistic ¢. The
calculation of ¢ is based on the sample sizes and
sample estimates of the parametric means and
variances. If we assume the two populations have
the same variance and we draw samples of equal

size, then ¢ = (171 - )72)n”2 /\/Es wherf:17121nd172

equal the averages, n equals the sample size, and s
equals the standard deviation. Failure to consider
spatial and temporal variation can cause us to mis-
estimate the difference between the averages,

71 — 172 , and/or the standard deviation, s.

Mis-estimation arises most often when the ex-
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periment is laid out incorrectly. For example in our
grazing experiment, we should ideally have many
replicate sites spread over a very large area and at
various times of the year. In the half the sites, we
should exclude grazing animals and in the other
half animals should be allowed to graze freely.
Making fences to keep out grazing animals is, how-
ever, quite expensive, and so for convenience, we
might fence one large area. We then would take
many “replicate” samples from within the single
fenced area and compare these samples to a set of
samples taken from an adjacent unfenced area. This
sampling protocol, while easy and convenient,
presents statistical problems because we may seri-
ously mis-estimate the averages and the standard
deviation (see Hurlbert, 1984 for a complete dis-
cussion of this problem, which is known as
pseudoreplication). The fenced area, for example,
may be on a slightly lower and thus wetter site.
Plant biomass in the fenced area would then be
greater not only from reduced grazing but also from
the effects of the added moisture, which tends to
increase primary production. Thus the difference
between the two averages confounds the effects of
moisture and grazing pressure. In contrast, the
standard deviation may be smaller than we expect
because the samples within the fence area and in
the adjacent area are so close together that they are
correlated spatially. The end result is the t-test value
will be too large and will be much larger than the
test value if we had made many separate fenced
areas and spread them over a large area. More im-
portantly we may reject the null hypothesis but for
the wrong reason. Our single fenced area may dif-
fer from the single open area because of soil mois-
ture and not grazing pressure. Yet spreading our
sampling over a large area will most certainly in-
crease the standard deviation and make it difficult
to detect a difference over and above the back-
ground of environmental “noise.” Thus the prob-
lem is how to design an experiment that not only
reflects the natural variation we see in the field but
also controls for that variation so we able to under-
take statistical tests with sufficient power.

Controlling for spatial variation

The effect of spatial variation is usually
controlled by grouping observations and treatments
into blocks. These blocks are groups of treatments
that are placed nearby each other. In the simplest
designs, blocks are transect lines laid across the
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area of interest with each line containing at least
one replicate of each treatment. In analysis of
variance terms, the design with one replicate of
each treatment per block is known as a randomized
block design, and designs with multiple replicates
of each treatment per block are known as mixed
models (for a fuller explanation, see Snedecor &
Cochran, 1989; Sokal & Rohlf 1995; Potvin 2001).

Transect lines or blocks can be laid out in a
number of ways and our choice depends on our
knowledge and preconceptions of how spatial
variation affects physical and biological processes.
In general, we usually know or assume replicate
sites close together are likely to have similar
responses because of similarities in local
environmental conditions. Replicates within blocks
(or on transect lines) are thus grouped together to
standardize for the common local effects. The
blocks themselves are spread apart so differences
among blocks reflect differences among
environmental conditions. If nothing is nothing is
known about the pattern of spatial variation,
transect lines or blocks are laid out at random. If
we know something about the pattern of spatial
variation, then the transects or blocks should be
set out so replicate sites within each block or
transect are under similar conditions. For example,
if environmental conditions follow an elevational
gradient, groups of replicates treatments can then
be blocked by elevation. This is done by laying out
transect lines that follow the elevational isoclines
and randomly assigning the treatments (for
example, fenced areas or open areas) to replicate
sites along the transect.

Three different analyses of a contrived example
illustrates how blocking can control for spatial
variation. Imagine we again wish to test the effects
of grazing on plant biomass and we know that
biomass varies with elevation. Figure 1A shows
the contour map for grassland with 36 experimental
sites spread across the elevational gradient. Grazing
animals are excluded from half of the sites with
fences and the other half is accessible to grazers.
Assignment of treatments to sites should be done
randomly, but to make the analyses of the examples
clearer, the treatments are laid out in a alternating
pattern. The contrived data are given in Table 1.

First suppose we know nothing about the
potential effects of elevation on plant biomass. In
this case, the 18 fenced sites and the 18 accessible
sites would considered replicate samples, and the
simplest test would be a t-test or a one-way analysis
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Table 1. Contrived data for aboveground plant biomass (kg/m?). Layout of transects shown in Figure 1. Data
were generated by summing elevation codes (I = 0.1, IT = 0.2, etc.), treatment codes (Open areas = 0.1, Fenced
areas = (.2), and a random number between 0 and 0.1. For example, the entry for elevation V, transect B, and

fenced = 0.5 + 0.2 + 0.0054 = 0.7054.

A B C D E F
I O 0.2626 F 0.3848 O  0.2866 F 0.3041 O 0.2449 F 0.3218
II F 04128 O 0.3898 F 0.4627 O 0.3291 F 04251 O 0.3181
Imm O 04851 F 0.5804 O 0.4290 F 05234 O 04722 F 0.5942
IV. F 0.6373 O 0.5191 F 0.6348 O 05774 F 0.6807 O 0.5827
v O 0.6851 F 0.7054 O 0.6526 F 0.7886 O 0.6486 F 0.7700
VI F 0.8867 O 0.7066 F 0.8883 O 0.7526 F 0.8778 O 0.7563

of variance in which the spatial arrangement is
ignored. Analysis of variance shows no significant
effect of grazing because the error variance is too
large (see Table 2). The average plant biomass
between the two treatments appears to be different
seem to be different (Table 2) but there is too much
“noise” (i.e. the standard errors are large) to detect
a significant “signal” of the treatments (i.e. the
difference between the treatments).

because the blocking has reduced the error variance
(Table 2). Note the treatment averages for this
analysis are identical to the averages from the first
analysis (Table 2). In addition, the two analyses
have the same treatment Sums of squares (Table 2,
Treatment SS = 0.0881), which a measure of the
amount of variation explained by the treatment
effect. The “signal” remains the same but the level
of noise has been reduced by taking into account

Table 2. Analyses of variances for examples. Data for examples 1, 2, and 3 are given in Table 1; for example 4
in Table 3. Layouts of experiments are found in the figures; examples 1, 2, and 3 in Figure 1, example 4 in
Figure 3. d.f. = degrees of freedom, SS = Sums of Squares, MS = Mean Squares, P = probability levels. Num-
bers in parentheses in Example 4 are the adjusted degrees of freedom (Greenhouse-Geisser correction). Treat-
ment averages (O = open areas; F = fenced areas) and standard errors (S.E.) are given with each analysis.

Source d.f. SS MS F-ratio P Average S.E.
Example 1 1 0.0881 0.0881 2.625 0.1145 (6] 0.505 0.043
Treatment
Error 34 1.1408 0.0336 F 0.604 0.043
Example 2 1 0.0881 0.0881 93.197 0.0002 (6] 0.505 0.007
Treatment
Elevation 5 1.1127 0.2225 235.509 <0.0001 F 0.604 0.007
Treatment x Elevation 5 0.0047 0.0009 0.969 0.4562
Error 24 0.0234 0.0010
Example 3 1 0.0881 0.0881 5.342 0.0688 (6] 0.505 0.030
Treatment
Transect 5 0.0013 0.0003 0.015 0.9998 F 0.604 0.030
Treatment x Transect 5 0.0824 0.0165 0.374 0.8613
Error 24 1.0571 0.0440
Example 4
Between Subjects Analysis
Treatment 1 0.0881 0.0881 662.08 <0.0001 (6] 0.505 0.003
Plot within Treatment = Error 4 0.0005 0.0001 F 0.604 0.003
Within Subjects Analysis
Time (2.6) 5 1.1127 0.2225 194.657 <0.0001
Treatment x Time (2.6) 5 0.0047 0.0009 0.8265 0.4935
Error (10.6) 20 0.0229 0.0011

The outcome is quite different if information
about elevation is included in the analysis. Suppose
the transect lines follow the elevation contours
exactly (Fig. 1B), and the analysis of variance
includes transect lines as blocks. The test now
shows significant effect of grazing on plant biomass

the elevational gradient. As a result, the standard
errors of the averages are reduced (Table 2). Note
that the effect of blocking can be seen in the block
averages (Fig. 2).

Blocking re-distributes the unexplained
variation, which is related to the error Sum of
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Squares. In the one-way analysis of variance, in
which spatial information is ignored, the error Sum
of Squares is 1.1408 with 34 degrees of freedom
and contains the variation due to elevation. The
blocking by elevation in the second analysis of
variance partitions the original error sums of
squares into variation due to elevation (SS=1.1127,
d.f. = 5), to the interaction of treatment and
elevation (SS=0.0047, d.f. =5), and to unexplained
sources (i.e. the new error Sum of Squares, which
equals 0.0234 with d.f. = 24). The sum of the new
Sum of Squares and their degrees of freedom equal
the original error Sum of Squares and its d.f. The
variation is truly re-distributed by blocking.
Blocking can still improve the power of a test
even when we don’t know the pattern of spatial
effects. As an extreme example, suppose we lay
out the transects so they ran across the elevational
gradient (Fig. 1C). Each block would then contain
a collection of sites that differ quite bit but blocks

blocking, which controls for spatial variation by
grouping similar sites together.

Normally we would expect our ability to control
for spatial variation to fall somewhere the two
extremes. At one extreme, the testis very powerful
if we can account for the effects of spatial variation
exactly. At the other extreme, the test is only slightly
better than simple t-test if we completely misjudge
the direction of the gradient. Even with a good guess
of the direction of the gradient combined with
random assignment of the direction and position
of transects based on our guess will provide a
reasonably powerful test.

Controlling for temporal variation

The control of temporal variation, at least
naively, should be akin to the control of spatial
variation with variation through time replacing
variation across space. However, there are
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Figure 1. Contrived elevation contour maps showing positions of fenced and open areas. Shaded circles are
fenced areas; open circles are open areas. Panel A shows layout for one-way analysis of variance that ignores
spatial effects (Example 1 in Table 2). Panel B shows layout for two-way analysis of variance that controls for
spatial variation by using elevation contours as blocks (Example 2 in Table 1). Panel C shows layout for two-
way analysis of variance that fails to control for spatial variation because blocks (i.e. transects) run across the

elevational gradient.

will not differ very much from each other. There is
no change in the treatment averages but the
treatment standard errors are quite large (Table 2).
The analysis of variance shows no significant
difference between the treatments. The effect of
blocks is also not significant, and the block averages
are nearly identical (Fig. 2). The standard errors of
the blocks are large because the spatial variation
across the elevational gradient in contained within
each block. This design does a poor job of
accounting for the spatial effects of elevation, but
it is a design that is commonly used when
researchers do not understand the purpose of
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statistical difficulties because the data are often
serially correlated. This means an observation from
one time point is correlated with an observation
from the next time point, and so the observations
are not independent. For example, if the air
temperature at 1300h is 10°C, it is likely the air
temperature at 1400h will be within a couple of
degrees of 10°C. The temperatures are correlated.
Standard statistical tests, such as t-tests, will be
biased if there are temporal correlations in the data
because the sample variance is underestimated. The
tests, thus, tend to reject the null hypothesis too
often. A full description of how to deal with serially
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Figure 2. Block averages and standard errors from
examples 2 and 3 in Table 2. Note block averages
show the effects of elevation and have smaller
standard errors when blocking is done by elevation.

correlated data is beyond the scope of this paper;
see Box and Jenkins (1976) for a good introduction.
Repeated measures analysis of variance is often

used to control for temporal variation (e.g., von
Ende, 2001). This is good method because the
significance tests are adjusted for serial

correlations. The adjustment, however, assumes a
very specific form of serial correlation, and it can

The same contrived data can be used to illustrate
how a repeated measures analysis of variance
partitions the variation. Suppose we again wish to
test the effects of grazing but we the suspect the
amount of plant biomass depends on the season.
Thus early in the spring, we might expect plant
biomass to be low in both open areas and fenced
areas. As the season progresses and plants begin to
grow, the amount of biomass should increase.
However, we would expect the increase to be larger
in the areas where grazers have been fenced out.
Table 3 shows the contrived data from Table B re-
arranged into a design of three fenced areas and
three open areas, each sampled six times during
the season.

Repeated measures analysis of variance divides
the analysis into two parts - “Between Subjects”
and “Within Subjects.” This terminology comes
from the field of experimental psychology, where
repeated measures analysis was developed for the
repeated testing of individuals (i.e., subjects. The
Between Subjects analysis tests the overall effect
of the treatment and is akin to testing the averages
across time. The Within Subjects analysis tests for
trends across time and if that trend differs among
treatments.

Table 2 gives the repeated measures analysis
and shows the relationships to the standard analysis
of variance in which elevation is blocked. Note that
several of the Sums of Squares are identical because
the same contrived data are used in both analyses.
The treatment SS is the same in both analyses.
Other Sums of Squares are the same but have

Table 3. Contrived data for repeated-measures analysis of variance. Plot of data is given in Figure 3. Data are
identical to the data in Table 1, but re-arranged so that time replaces elevation. Codes for elevation, which are
found in Table 1, are given below the new codes for time. Letters within the table identify block codes used in

Table 1.

Treatment Plot Time 1 Time 2 Time 3 Time 4 Time 5 Time 6
D ) (I1I) av) (\%) (VD

Open 1 02626 A 03898 B 0.4851 A 0.5191 B 0.6851 A 07066 B
Open 2 02866 C 0.3291 D 04290 C 05774 D 06526 C 0.7526 D
Open 3 02449 E 03181 F 04722 E 05827 F 0648 E 07563 F
Fenced 1 03848 A 04128 B 05804 A  0.6373 B 07054 A 08867 B
Fenced 2 03041 C 04627 D 05234 C 06348 D 0.786 C 0.8883 D
Fenced 3 03218 E 04251 F 05942 E 06807 F 07700 E 08778 F

be difficult to assess how well the data meet the  different names: elevation SS = time SS and

assumption about correlation structure. Repeated
measures analysis of variance can be done as either
aunivariate or multivariate analysis, and these two
approaches give different results because different
assumptions are made about the correlation
structure. It has been my experience the two
approaches give similar results except when the
significance of a test is marginal.

treatment x elevation SS = treatment x time SS.
The error Sum of Squares in the two-way analysis
of variance is partitioned into two parts in the
repeated measures analysis of variance.
Although the Sums of Squares are similar, the
interpretation of the tests differs slightly for the
repeated measures analysis. The treatment F-ratio
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tests the null hypothesis that there is no overall
average difference between fenced and open areas.
The Between Subjects test is identical to an one-
way analysis of variance using the averages across
time as the replicates (i.e. 3 averages from the
fenced areas and 3 averages from the open areas).
Just as in the blocking of transects for spatial
variation, controlling for the effects of time reduces
the standard errors (Table 2).

The Within Subjects analysis tests for the effects
of the repeated measurements done over time. The
F-ratio for the effect of time tests the null hypothesis
that there is no change in plant biomass over time.
This test is significant, and we conclude that plants,
not surprisingly, gain biomass as the season
progresses (see Fig. 3). The correction for serial

0.9

Plant biomass (kg per m?)
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Figure 3. Plot of contrived data used in the repeated-
measures analysis. Shaded circles denote fenced
areas; open circles denote open areas. Data are given
in Table 3; analysis is given in Table 2.

correlation among the repeated measurement of the
same plots is carried out by adjusting the degrees
of freedom (see Table 2). Finally, the test for the
effect of treatment x time asks if the average
response in fenced and open areas differs over time.
This test is not significant, suggesting that the
temporal changes in plant biomass show a similar
pattern. The only difference is that the fenced areas
have higher yields at any point in time.

More on temporal variation: Intervention
analysis, BACI and beyond

One other situation is worth mentioned because
it occurs so often in course of environmental
monitoring. One could imagine a situation in which
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we have a single temporal series of observations
before and after an event or change. For example
we could have data on plant biomass before and
after the introduction of grazing animals into a
single area. The effect of grazing could be tested
by comparing the before and after observations with
a simple t-test. This kind of analysis is known as
intervention analysis and was first used to test the
effects of air pollution in Los Angeles after the
implementation of laws for pollution controls (Box
and Tiao 1975).

An extension of this approach involves not only
data from before and after an intervention but also
data from a control and an impact site (Fig. 4A). In
the ecological literature, experimental designs are
known as BACI designs (i.e., Before-After-
Control-Impact designs). Analysis is carried out
by taking the difference between paired control and
impact observations and comparing the “before”
differences against the “after” differences (see
example in Fig. 4A).

In a series of papers, Underwood (1991, 1992,
1993, 1994) extended BACI designs to include
multiple control and/or impact sites. These designs
are known as “Beyond BACI” designs or IVRS
design (for Impact Versus Reference Sites). The
analysis is similar to the BACI analysis but the
single control observation at each time point is
replaced with the average of the reference (i.e.
control) sites. The before and after differences are
compared using a 7-test or analysis of variance (see
example in Fig. 4B). Intervention analysis, BACI
designs, and their extensions have subtle
differences because of different assumptions about
not only temporal variation but also spatial
variation. For a full discussion of the issues raised
by ecological data (see Underwood, 1991, 1992,
1993, 1994 and Stewart-Oaten & Bence, 2001).

Recommendations

In closing, I would like to offer several
suggestions. While my advice is framed within the
context of the problems raised by spatial and
temporal variation, these are common-sense
notions that are applicable to any field experiment.

1. Seek advice about experimental design and
statistical analysis before you start an experiment,
not after you collect the data.

2. Spread your replicates over the ranges of
spatial and temporal variation that are of interest.
Avoid setting up an experiment in which all the
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Figure 4. Contrived time series data with an intervention or change occurring at the time indicated by the
arrows. Control sites, which are not affected by the intervention, are shown as open circles. The solid circles
show the data for the single impact site. The D values are the averages based on the difference between the
paired control and impact data at each time point. Numbers in parentheses are standard errors. The Before and
After D’s can be compared with a t-test. The t-test is often adjusted for the serial correlation in the data. Panel A
shows standard BACI (Before-After-Control Impact) analysis, which is based on a single control site and a
single impact site. Panel B shows a “Beyond BACI” design in which the D’s are based on the difference
between the average of several control sites and the single impact site at each time point.

replicates of a particular treatment are grouped
together in either time or space. For example, you
should never use a single fenced area and repeatedly
sampling plant biomass within that area.

3. Use your knowledge of spatial patterns to
block groups of treatments together. Each block
should encompass an area in which you expect the
background environmental conditions to be similar.
Each block should contain at least one replicate of
each treatment.

4. Experimental designs with blocks are
considered mixed models. F-ratios and associated
degrees of freedom in mixed models depend on
the number of blocks and treatments, not on the
number of replicates per block by treatment
combination. Given the choice between increasing
the number of replicates or the number of blocks,
you should always increase the number of blocks.

5. Data taken at different points in time are often
serially correlated and analyses must correct for
these correlations. Repeated measures analysis of

variance is a reasonable approach if you wish to
control for serial correlation.

6. Intervention analysis, BACI designs and their
extensions can involve slightly different
assumptions about spatial and temporal
correlations. Consult someone familiar with these
methods unless you are certain of how you wish to
model spatial and temporal correlations.
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XypaaHnryii

OpoH 3aii, nar xyralaaHbl XyBbCajl Hb TYPIIHIITHIH
cyaaliraar TeJIeBIeX, XUNK TYHUITIIXd XYHAPII
yupyyllax Hb IOOHTYH. DHIXYY 6OryyJuIasp
SKOJIOTMIH COPHII, TYPIIMITBIH Cyfajiraa Xuhxas)
OPOH 3ali, IIar XyralaaHbl XyBbCIIBIT X9PX9H XsSHAX
apryyabpIT TaHUIIyyicaH 0oiaHo. Cymmaadyus opoH
3aif, mar xyramaaHbl XyBbCIBIT OYpIH Xaprajia3aH
Y32K 4aJaaryiraisc COpUil, TYPUIIMIITBIH a)xjaa
Oypyy TyHuaTraxsa xypasr. Uiima skomoruitn
TYPIIWITBIH CyJalraaHbl XaMIHIHH 4yXall acyyaal
001 cymanraaHbsl Taa0alI TOXUOIIIOT OalTaTuitH
XYBBCIIBIT TyCracaH TOAMUTYH, TYYHWIIH IHIXYY
XYBBCIIBIT XsIHACAH, TUHM 4 yUpaac ereries11ee JayH
MUHXUIATYY XUHX CTATUCTUK TECTYYA Hb
XaHTanTTa “Xydupxsr’ Oallx TYpIIUITHIH
cyJanraar TeJeBIeX acyyaal oM.

OpoH 3aiiH XyBBCIBIT QXUTTAIT 0a TYPUIMITHIH
HATKYYAD “O50K” GONATOH OYIATIAX apraap roi
TeJeB XsHajar. BIOKyyabIT OJIOH STH3BIH apraap
YYCI2kK 00510X 0a OJTIOKBIH HOJIOOT XsTHAX BAPUAHCHIH
aHanu3biH (Analysis of Variance 6yroy ANOVA)
XaH/IJIATBIT MOH 9HJT aBY Y3J199.

Oreranyyl HX3BUJIAH IlyBaa XxamaapailTau
(aBTOKOppeEISN) 66reen aXUriaaTyya Hb Oue
OmeHs3C Yl xamaapanTail 0yc 6aimar yupaac mar
XyTralaaHbl XyBbCIIBIT XSIHAX Hb WIYY XYHIPIJITIH
Gaiinar. MarepBeHuuiin ananu3 (intervention
analysis), maBTarjcaH X3MKWJITHWH BapUaHCHIH
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ananu3bir (repeated measures analysis of variance)
[ar XyralaaHbl XyBbCIIBIT XsTHAXa/ [ X3PITJIIX TyXai
aBY Y3¢3H 00J1HO. YyH23¢ rajiHa sxojoruun BACI
Iu3aiiH (eMHeX 0a Japaax XSHAJITHIH HOJIOOHUN
nuzaiin Oyroy Before-After-Control-Impact design)
I'9K HOPIIAT/IIX, OJIOH XSHAITBIH OOJIOH COPUIIBIH
Tajg0alT XaMpyyJIaH eproTrex 000X TyPIIFITHIH
JU3AWHBIT X9PATII9X Hb Onii. VIHTepBEeHIIMITH aHAITN3,
BACI nuzaitH 60J10H TOAIIPUNH ©preTreyyl Hb
30BXOH llar XyraunaaHbl TOJUNWTYH, OPOH 3ailH
XYBBCJIBIH TaIaapX TOCOOIITIOO PO XOOPOHI00 Oara
sUIrarar.

Ha3px acyymantaid XoJI0OOTOW X3 X33H
36BIIOMKHUIT 2HY OTYYLI3p oriiee. Tyxaimoar: 1)
TYPIIMJITAA XWX 3XJIIXUUH OMHO CTATUCTUKUUH
30BJIOTO6 aBaXblH YYXJBIT, 2) OPOH 3ai, Lar
XyramaaHbsl XyBbCIBIT I[ap XYpI3Tr XamMapcaH
XaHTAJATTall TOOHBI JaBTaJITTall OalXbIH
maapjaraTair, TYYHWISH 3) myBaa Xamaapibir
(aBTOKOppensAnM) 36B 30XUCTOW  XsAHAX
maap/aratai 600X Tyxai 30BJI6COH OOJIHO.
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